Thank you for purchasing the Tekno RC NT48 1/8th 4WD Nitro Competition Truggy. The NT48 represents the state-of-the-art in 1/8th nitro truggy technology. We hope you have as much fun driving your new vehicle as we did developing it. We are always working on new projects, so please check our website (www.teknorc.com) regularly for the latest news, parts, and kits. Thanks again.

Additional equipment and parts needed:
- 2/3 channel surface radio transmitter and receiver
- High torque steering and brake servo
- RX battery, switch harness
- .21 nitro engine, tuned pipe, manifold, and glow plug
- Fuel bottle, fuel, 1/8th scale starter box, and glow ignitor
- 1/8th scale truggy tires, wheels & CA glue
- Paint for body

Tools needed:
- Hex drivers (1.5mm, 2.0mm, 2.5mm)
- Nut drivers (5.0mm, 5.5mm, 7.0mm)
- Hobby knife
- Needle-nose pliers, screwdrivers
- 4mm & 5mm turnbuckle wrench
- 4mm arm reamer
- Lexan body scissors & reamer

Disclaimer: Tekno RC is not responsible or liable for any property or personal damage, loss, or injury incurred as a result of using this product. This kit is meant for use by persons 14 years of age or older and in the strict confines of a legally permitted RC track or facility.

Warnings:
Always double-check that your radio gear is working properly before operating vehicle.
Never operate the vehicle indoors (unless the RC track is an indoor facility). Use caution while operating vehicle so as not to collide with people who may be turn marshalling or who might otherwise not be aware that a fast moving RC vehicle is in the vicinity.

Warranty:
We warrant that the parts included in this kit are free from defects. If you find a defective part in your kit, please contact us at info@teknorc.com and we will help you to resolve the issue. We do not warranty parts that may be broken during operation of the vehicle or otherwise. Refer to the end of this instruction manual for a listing of spare/replacement and option parts. All spare parts and other info are available on our website (www.teknorc.com) and through our network of domestic and international dealers and distributors.
Step A-1

Note: Apply a liberal amount of grease to the outdrives, o-rings, and the large diff shims. This will ensure smooth operation.

Step A-2

Step A-3

Fill with 20,000 wt oil to 1mm below full

Note: Apply a liberal amount of grease in the areas between the shims and o-rings, as well as around the outdrive and both sides of the seal
Bag B
Center Differential
(Overview)

TKR1325
M3x14mm Flat Head Screw
4

TKR8808165
Ball Bearing(8x16x5mm)
2

TKR5144
Differential O-rings
2

TKR5145
Differential Shims(6x17mm)
2

TKR5112X

Step B-1

Grease

Note: Apply a liberal amount of grease to the outdrives, o-rings, and the large diff shims. This will ensure smooth operation.

Step B-2

TPR5150

Step B-3

DIFF OIL

Fill with 20,000 wt to 1mm below full

Step B-4

Grease

Note: Apply a liberal amount of grease to the outdrives, o-rings, as well as around the outdrive and both sides of the seal.
Bag C

Rear Differential (Overview)

Step C-1

 TKR1325 M3x14mm Flat Head Screw x4
 TKR5144 Differential O-rings x2
 TKR5145 Differential Shims (6x17mm) x2
 TKR8808165 Ball Bearing (8x16x5mm) x2

Note: Apply a liberal amount of grease to the outdrives, o-rings, and the large diff shims. This will ensure smooth operation.

Step C-2

 TKR5150

Step C-3

 TKR1325 x4
 TKR5404
 TKR5144
 TKR5145
 TKR5150

Fill with 10,000 wt to 1mm below full

Step C-4

 Note: Apply a liberal amount of grease to the areas between the shims and o-rings, as well as around the outdrive and both sides of the seal.

TKR5143

Grease

Grease
Note: TKR1222 - The gear mesh should be as close as possible without any binding. Test the fitment of the diff with both TKR1222 shims on the gear-side of the diff. If the diff turns freely without binding, continue to next step. If the diff binds and does not turn freely (it will make a grinding or crunching sound when spun), remove one TKR1222 shim from the gear side and install it onto the other side of the diff. Reassemble and test the mesh again. If it is still binding, remove the second TKR1222 shim from the gear side and install it onto the other side of the diff. When you are satisfied that you have the best gear mesh possible continue to the next step.

Note: The front and rear of the car use different inner bulkheads. The front is angled whereas the rear is offset and only slightly angled.
Bag E

Center Differential Assembly

Front engine configuration (overview)

Step E-1

- Note: For optional rear engine configuration, please see step E1-RE on page 32

- Pre-thread all brake post holes with a separate M3 screw

Step E-2

- Note: Use CA glue to attach risers to diff support bottoms

Step E-3

- Note: Thread brake posts all the way in. Fit the brake discs and back posts off until center diff moves freely.

- Note: Use CA glue to attach riser to diff brace bottom

Step E-4

- Note: Orientation of the brake cams TKR5215. The rear cam should be pointing up & the front cam should be pointing down.

- Thread lock

Step E-5

- Note: For optional rear engine configuration, please see step E5-RE on page 32

- x2 TKR1322 M3x8mm Flat Head Screw
- x4 TKR1402 M3x8mm Button Head Screw
- x1 TKR1404 M3x12mm Button Head Screw
- x4 TKR1522 M3x8mm Cap Head Screw
- x2 TKR1601 M3x4mm Set Screw
- x1 TKR5058A Pivot Ball M3x5.8mm No Flange
Note: TKR1222 - The gear mesh should be as close as possible without any binding. Test the fitment of the diff with both TKR1222 shims on the gear-side of the diff. If the diff turns freely without binding, continue to next step. If the diff binds and does not turn freely (it will make a grinding or crunching sound when spun), remove one TKR1222 shim from the gear side and install it onto the other side of the diff. Reassemble and test the mesh again. If it is still binding, remove the second TKR1222 shim from the gear side and install it onto the other side of the diff. When you are satisfied that you have the best gear mesh possible continue to the next step.
Most downforce Neutral Least downforce

Top hole is stock position (least amount of downforce)

TKR1524 M3x20mm Cap Head Screw x4
TKR1529 M3x12mm Cap Head Screw x8
TKR1201 M3 Lock Nut Black x2
TKR1221 M3x8mm Washer x2
Note: The holes in the arms are purposely tight and reaming the hinge pin holes may be necessary for bind-free suspension operation. Ream the hinge pin holes with a 4mm reamer until the pins easily fall through the hole without interference. This will ensure consistent suspension action.

Step H-1

- **TKR1327** M3x16mm Flat Head Screw x2
- **TKR1333** M3x40mm Flat Head Screw x2
- **TKR1443** M4x10mm Button Head Screw x2
- **TKR1525** M3x14mm Cap Head Screw x2
- **TKR5049A** Pivot Ball Sway Bar x2
- **TKR5079A** Stabilizer Ball x2

Step H-2

- **TKR1333**
- **TKR1525**
- **TKR1443**
- **TKR5056**
- **TKR5021**
- **TKR5013** (Option)
Bag H

Rear Sway Bar

STEP H-3

- **TKR5493** - 2.6mm
- **TKR5490** - 2.3mm
- **TKR5491** - 2.4mm
- **TKR5492** - 2.5mm
- **TKR5494** - 2.8mm
- **TKR5495** - 3.0mm

TKR5086

Note: Do not over-tighten.

STEP H-4

TKR1522 (Option)

- **TKR5490** - 2.3mm
- **TKR5491** - 2.4mm
- **TKR5492** - 2.5mm
- **TKR5494** - 2.8mm
- **TKR5495** - 3.0mm

TKR1601

TKR5086

TKR1522

TKR1601

Thread Lock

x2

TKR1522

M3x8mm Cap Head Screw

x6

TKR1601

M3x4mm Set Screw

Loosen the M3x4 set screw (TKR1601) if the anti-roll bar does not turn freely.

Install the Sway Bar Ball onto the Sway Bar Wire until the end of the wire is flush with the ball as picture above.
Bag 1

Rear Hub/CVA Assembly

Step I-1

- TKR5073
- TKR5070
- TKR5071
- TKR5071B
- TKR5071C
- TKR5071X (Option)
- TKR1603

Note: Notch on pin needs to line up with set screw.

Step I-2

- TKR1201
- TKR1603
- TKR5071X
- TKR5073
- TKR8B8165
- TKR8B13194

Note: Rear hubs (TKR5040) are left/right interchangeable.

Note:
- Do not overtighten rear outer hinge pin (TKR5034).
- Hinge pin should rotate freely.

Materials

- TKR1201 M3 Locknut Black (x4)
- TKR1603 M5x4mm Set Screw (x2)
- TKR5071X M3x16.8mm Pin (x2)
- TKR5073 CV Joint Pin (x2)
- TKR8B8165 Ball Bearing (8x16x5) (x2)
- TKR8B13194 Ball Bearing (13x19x4) (x2)

Instructions

- Hole "B" is the stock position
 - *Only use hole A in the arm with hole A in the hub*
 - *Only use hole B in the arm with hole B in the hub*

The outside hole offers greater stability and is recommended for bumpy open tracks. Inside hole offers greater amount of steering and is recommended for flat technical tracks.
Bag 1

Rear Camber Links

Step 1-3

- **Left**
 - TKR5051
 - TKR5052A
 - TKR5053A
 - TKR5450

- **Right**
 - TKR5051
 - TKR5052A
 - TKR5053A

Note: No flange for this side mounts on hub.

Note: Flange for this side mounts on shock tower.

Step 1-4

- Note: Notch always goes on left side of vehicle.

- TKR1201

Stock position is 1 / B

- **TKR1529**
 - M3x20mm Cap Head Screw
 - x4

- **TKR5052A**
 - Pivot Ball M3x6.8mm
 - x2

- **TKR5053A**
 - Pivot Ball M3x6.8mm No Flange
 - x2

Table

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKR1201</td>
<td>1 x 4</td>
<td>M3 Locknut Black</td>
</tr>
<tr>
<td>TKR1529</td>
<td>1 x 4</td>
<td>M3x20mm Cap Head Screw</td>
</tr>
<tr>
<td>TKR5052A</td>
<td>1 x 2</td>
<td>Pivot Ball M3x6.8mm</td>
</tr>
<tr>
<td>TKR5053A</td>
<td>1 x 2</td>
<td>Pivot Ball M3x6.8mm No Flange</td>
</tr>
</tbody>
</table>
Bag J
Front Suspension (overview)

Step J-1

TKR1327
M3x16mm Flat Head Screw
x2

TKR1333
M3x40mm Flat Head Screw
x2

TKR1443
M4x10mm Button Head Screw
x2

TKR1525
M3x14mm Cap Head Screw
x2

TKR5049A
Pivot Ball Sway Bar
x2

TKR5079A
Stabilizer Ball

Step J-2

TKR1327

TKR1333

TKR5020

TKR5021

TKR5017

TKR1443

TKR5079A

TKR5056

TKR5049A

TKR1525

TKR5436

TKR1525

Stock Position

Stock Position
Install the Sway Bar Ball onto the Sway Bar Wire until the end of the wire is flush with the ball as shown in the picture above.

Loosen the M3x4 set screw (TKR1601) if the anti-roll bar does not turn freely.

Note: Do not over-tighten.
Note: notch on pin needs to line up with set screw.

Step K-1

- **TKR5042B**
- **TKR5042**
- **TKR1445**
- **TKR5054A**
- **TKR1603**
- **TKRBB13194**
- **TKR5071**
- **TKR5071**
- **TKR5071**

Note: Fully tighten screws (TKR1445), then loosen until spindles (TKR5041) move freely. This will ensure smooth operation and minimize play.

Step K-2

- **TKR1221**
- **TKR1401**
- **TKR1445**
- **TKR1447**
- **TKR1448**
- **TKR1603**
- **TKR5054A**
- **TKR5054A**
- **TKR1221**
- **TKR1401**

Note: The steering stops provide adjustable travel limiters that you can adjust to your driving style. For very tight tracks you may want to experiment with less limiting washers (more steering travel). However, with too much steering travel the rear end can lose traction more easily coming out of corners. After months of testing on different track surfaces, 3 washers is the most consistent setting.

Step K-3

- **TKR5055A**
- **TKR5071**
- **TKR5073**
- **TKRB8813194**
- **TKR8B8B144**
- **TKR5055A**

Note: Fully tighten screws (TKR1447, TKR1448), then loosen until spindles carriers (TKR5042B) move freely. This will ensure smooth operation and minimize play.
Bag K

Front Camber Links

- **Step K-4**
 - TKR505A
 - TKR5051
 - TKR5052A
 - TKR5053A
 - This side mounts on hub
 - Note: no flange
 - This side mounts on shock tower
 - Note: flange

- **Left**
 - TKR5451
 - TKR5051

- **Right**
 - TKR5451
 - TKR5051
 - TKR5052A
 - TKR5053A
 - This side mounts on hub
 - Note: no flange
 - This side mounts on shock tower
 - Note: flange

- **Step K-5**
 - TKR1201
 - TKR5052A
 - TKR5053A
 - This side mounts on hub
 - Note: no flange
 - This side mounts on shock tower
 - Note: flange

- **TKR5051**
 - This side mounts on hub
 - Note: no flange
 - This side mounts on shock tower
 - Note: flange

- **TKR5053A**
 - Left
 - This side mounts on hub
 - Note: no flange
 - This side mounts on shock tower
 - Note: flange

- **TKR5051**
 - Right
 - This side mounts on shock tower
 - Note: flange

- **TKR5052A**
 - Pivot Ball M3x6.8mm
 - No Flange
 - x4

- **TKR5053A**
 - Pivot Ball M3x6.8mm
 - x2

- **TKR1201**
 - M3 Lock Nut Black
 - x4

- **TKR5451**
 - M3x20mm Cap Head Screw
 - x4

- **Notch**
 - Always goes on left side of vehicle

- **Stock position**
 - 1 / A

Dimensions

- 61.80
Bag L
Steering Assembly (Overview)

Step L-1
Note: Tighten nut all the way down, then back it off 4 full turns.

Step L-2
Note: Apply a small drop of oil for easy o-ring installation.

Step L-3
Note: Notch always goes on the left side of the vehicle.

Step L-4
Note: Stock bumpsteer setting is 2 washers above and 2 below the steering ball link.
Bag M

Front End Assembly

Step M-1

Note: Step M-1: Line up the bottom of the steering posts (TKR5102A) with the corresponding recess cut in the chassis.

Step M-2

Note: Initial bumpsteer setting is four washers above the steering ball link.

Step M-3

Note: On steps M-2 and M-3, do not tighten the screws all the way down until the assembly steps are complete. Position the entire front assembly on the chassis and tighten each screw evenly.
Note: Two rear chassis braces are included in the kit. The longer brace is the stock brace. The short brace is optional. The longer brace will provide less flex. Adding the short brace will further stiffen the chassis. Running only the short brace will provide the most flex.
The following steps and information will provide you with the proper way to fill and bleed your Tekno RC NT48 shocks.

After thorough testing, we’ve found it’s easiest to complete steps 1 through 3 on each shock before moving onto step 4. By the time you’ve finished step 3 on the last shock the first one should be ready for step 4.

Step 1. Extend the shock shaft all the way down. Fill the shock with oil until the body is approximately 90% full.

Step 2. Slowly pump the shock shaft up and down about 3-5 times to release air bubbles from underneath the piston.

Step 3. Let the shock rest vertically with the shock shaft fully extended for five minutes or until all of the air bubbles have released.

Step 4. Push the shaft in so that ~20mm of shaft is between the bottom of the cartridge and the top of the rod end. Make sure that you match the rebound amount between the left and right shocks. The vented cap design doesn’t provide much rebound. We’ve found that running the least amount of (0%) rebound in both the front and rear shocks gives the most consistent overall performance.

Step 5. Next you will top off the shock with oil. Fill to just a hair below full, level with the top of the shock body, but not doming over the top. If you do overfill the shock, it won’t hurt performance, it will just spill out.

Step 6. In this step you will be placing the bladder inside the shock cap. Slowly screw the shock cap onto the shock body while holding the shock vertically. Continue screwing slowly until oil begins to bleed out of the bleeder hole. At this point, rotate the shock over about 50-60 degrees with the bleeder hole pointing up. Continue to screw the cap on and bleed the shock until the cap is tight. Wipe off excess oil. A good hand tightening is all that is needed, but feel free to use tools to make them tighter if you wish.

Note: It’s very important to consider ambient temperature when selecting shock oil viscosity. We recommend #600 cst for the front suspension and #500 cst for the rear suspension for 70-80°F (21-26°C) outside temperature. You may need to go up or down 50-100cst in shock oil for each 10°F (5°C) of temperature change (lower temperature -> lower viscosity). The oils in the kits are a great starting point. We suggest starting with the kit oils and moving up or down depending on the track conditions and ambient temperature. You can build the shocks in any manner you prefer, but we’ve found this way provides the best handling and more consistent shocks. They will also last longer between rebuilds.

Use part #’s TKR6008 (shock bushings and cartridge guides) and TKR6009 (o-ring pack) to rebuild your shocks regularly. We also offer a line of optional CNC shock pistons (TKR6050 -> TKR6054). The included pistons are TKR6051 (8x1.3mm holes).
Bag O

Front Shock Assembly

Step 0-1

- TKR6015
- TKR6008
- TKR6009
- TKR1200
- TKR6001
- TKR6002
- TKR6003
- TKR6004

Note: make sure to tighten both cartridge cap (TKR6013) and shock cap (TKR6003) to ensure a proper seal. Tools may be required.

Step 0-2

- TKR6023
- TKR6091
- TKR6092
- TKR6093
- TKR6005
- TKR5049A
- TKR6009
- TKR6005

Note: Use green slime or oil on shock shaft threads AND O-rings to prevent tearing and leaking.

Step 0-3

- TKR1200
- TKR1202
- TKR1211
- TKR1529
- TKR6008
- TKR5027
- TKR1202
- TKR1529
- TKR5027

Stock shock position is the outside hole on the arm and the inside hole on the tower.

Stock front ride height is 35mm.

Shock length (droop) is 120mm.

Note: slot in spring perch should face outside of vehicle.

Note: Fill oil level just below the top of the shock body. Use #600 Oil Front.

Note: make sure to tighten both cartridge cap (TKR6013) and shock cap (TKR6003) to ensure a proper seal. Tools may be required.

Reminders

- Hex 4035 - M2.5
- Stock shock position is the outside hole on the arm and the inside hole on the tower.
- Stock front ride height is 35mm.
- Shock length (droop) is 120mm.
- Note: slot in spring perch should face outside of vehicle.
Bag P

Rear Shock Assembly

Step P-1

- **TKR6105**
- **TKR6008**
- **TKR6009**

Note: shaft guide orientation

- **TKR6060**

- **TKR6061**
 - **TKR6061T** (Option)

Note: Use green slime or oil on shock shaft threads AND O-rings to prevent tearing and leaking.

- **TKR6003**
 - **TKR6018**
- **TKR6009**

Note: make sure to tighten both cartridge cap (TKR6015) and shock cap (TKR6003) to ensure a proper seal. Tools may be required.

Step P-2

- **TKR6023**
- **TKR6081**
 - **TKR6082**
 - **TKR6083** (Option)

- **TKR6005**

Note: Apply a small drop of oil for easy O-ring installation.

Step P-3

- **TKR1200**
- **TKR1202**
 - M4 Lock Nut Black
- **TKR1211**
 - M3 Lock Nut Flange Black
- **TKR1529**
 - M3x20mm Cap Head Screw
- **TKR5027**
 - Shock Stand Off

Stock shock position is the middle hole on the arm and the inside hole on the tower.

Stock rear ride height is 35mm.

Shock length (droop) is 135mm.

Make note: slot in spring perch should face outside of vehicle.

Note: Fill oil level just below the top of the shock body

Use #500 Oil Rear

Note: make sure to tighten both cartridge cap and shock cap to ensure a proper seal. Tools may be required.

TKR6050
TKR6052
TKR6053
TKR6054 (Option)

Note: Use green slime or oil on shock shaft threads AND O-rings to prevent tearing and leaking.

Stock shock position is the middle hole on the arm and the inside hole on the tower.

Stock rear ride height is 35mm.

Shock length (droop) is 135mm.

Make note: slot in spring perch should face outside of vehicle.

Note: Fill oil level just below the top of the shock body

Use #500 Oil Rear

Note: make sure to tighten both cartridge cap and shock cap to ensure a proper seal. Tools may be required.
Note: We recommend using a piece of thin foam or other type of padding under the battery to reduce shock. Likewise, we suggest either using a couple layers of 2-sided tape under the receiver or simply use another piece of foam and let the receiver ‘float’ in the box. The servo wires will help keep the receiver in place and provide shock protection.

RED = Switch / YELLOW = Brake Servo / BLUE = Steering Servo

Wire Routing Diagram

Antenna tube installation

Components:
- **TKR1401**
- **TKR1525**
- **TKR1221**
- **M3x6mm Button Head Screw**
- **M3x14mm Cap Head Screw**
- **M3x8mm Washer**
- **TKR1601**
- **Antenna tube**
- **RX Tray Mud Guard**
Note: Do not overtighten radio tray screws.

Note: Do not overtighten mud guard screws.
Bag R
Air Filter / Clutch

Step R-1
- TKR1323
- TKR5324
- TKR5324
- TKR5324
- *TKR5363 (Option) (foams only)*
- *TKR5363 (Option) (foams only)*
- TKR5324
- TKR5324

Note: Your kit contains 3 sets of clutch springs. 0.9mm (green), 1.0mm (gold), and 1.1mm (red) springs are included. The stock setting is to use (2x) 1.0mm springs on opposing shoes and then use (2x) 1.1mm springs on the other shoes. If the track is very high bite you can use (4x) 1.1mm springs for more 'pop'. If traction is an issue at your track, use softer springs. We recommend trying the stock setting first and adjusting from there.

Step R-2
- TKR5353 x4
- TKR5351 x4

Step R-3
- *Engine and Pipe Sold Separately*
- TKR5353
- TKR5353
- TKR1226
- TKR8805134
- TKR4213
- TKR5353
- TKR5353

Note: Properly shimming the clutch bell is critical. The clutch bell must not rub on the flywheel. Depending on your particular engine, you may need to use a few of the 5x7x.2mm shims (TKR1226) to properly space the clutch bell. The clutch bell must also move freely when the end washer and screw are fastened. There is no 'one size fits all' for the number and order of clutch bell shims that need to be used. In rare cases, the clutch bell may be too long. Simply put the clutch bell flat on a sheet of 200 grit sand paper (teeth side up) and sand about .2mm off the bottom. This should only take a minute and it will ensure that your clutch is working properly.

Step R-4
- *Engine and Pipe Sold Separately*
- TK1226
 - 5x7x0.2mm shim x4
- TKR1323
 - M3x10mm flat head screw x3
- TKR5353
 - Clutch pin x4
- TKR8805115
 - Ball bearing (5x11x5) x1
- TKR8805134
 - Ball bearing (5x13x4) x1

*Manifold and pipe springs not shown or included.

Engine and Pipe Sold Separately

Thread Lock
Bag S

Engine / Pipe Installation

Step S-1

Note: For optional rear engine configuration, please see step S1-RE on page 32

VERY IMPORTANT - With the set screws that secure the pipe hanger wire set loose, install pipe onto pipe hanger wire. Adjust the wire such that the pipe and the manifold connections from the engine are not bent or angled. The pipe must fit naturally. You may need to bend the pipe hanger wire to accomplish this. Then tighten the set screw that secures the wire to the wire hanger block. The wire must then be cut flush to the wire hanger block so it will not interfere with the fuel tank. If the wire is not flush with the block, you may risk puncturing your fuel tank.

You may need to bend the pipe wire hanger forward or backward depending on your particular pipe.

Step S-2

Step S-3

TKR1343

M4x10mm Flat Head Screw

TKR1524

M3x12mm Cap Head Screw

TKR1525

M3x14mm Cap Head Screw

TKR1603

M5x4mm Set Screw

* Buggy images shown to better fit page

Note: For optional rear engine motor configuration, please see step S1-RE on page 32

[Thread Lock]

SET SCREW (not included)

***VERY IMPORTANT - With the set screws that secure the pipe hanger wire set loose, install pipe onto pipe hanger wire. Adjust the wire such that the pipe and the manifold connections from the engine are not bent or angled. The pipe must fit naturally. You may need to bend the pipe hanger wire to accomplish this. Then tighten the set screw that secures the wire to the wire hanger block. The wire must then be cut flush to the wire hanger block so it will not interfere with the fuel tank. If the wire is not flush with the block, you may risk puncturing your fuel tank.*

You may need to bend the pipe wire hanger forward or backward depending on your particular pipe.
Note: Offset servo arm so it is parallel with the connecting arm at neutral or zero servo position.
Note: Your throttle linkage should look something like this.

Note: After your throttle linkage is adjusted correctly, you may need to cut the excess wire from the throttle linkage rod. Leave approx. 5mm of wire behind the linkage stopper. If too much wire is left it will interfere with the body.

Note: You may need to rotate the carburetor and ball end to achieve proper throttle linkage alignment. The ball end should be leaning back when the forward engine position is used. The ball end should be leaning forward when the rear engine position is used. This will eliminate any binding due to improper alignment.

Note: Throttle linkage rod and carburetor angle should be colinear (form a straight line).

Note: The throttle arm of the throttle/brake servo horn should be parallel with the direction of the vehicle (point straight ahead as shown). The spring and linkage stopper on the throttle linkage should be adjusted such that the carburetor is fully closed at this position. The linkage stopper should be very tight. Full throttle end point should not flex the radio tray or put undue stress on the carburetor. Go fully open, then back off a couple ticks. Brake adjustment should be done in a similar matter. On the track, make a final adjustments to the brakes to suit your particular driving style.
Bag U
Fuel Tank

Note: Install (2x) o-rings (TKR5125) under each end of the fuel tank. This will allow you to tighten the screw (TKR1524) and still allow the tank to move slightly and absorb shock better.

*Align the fuel tank posts to the cutouts in the chassis

Note: Pick up line is shown in yellow. Pressure line is shown in blue.
Note: The orientation of the engine mounts (TKR5323) and the exhaust pipe hanger (TKR5321) have changed to accommodate the rear engine configuration.

Note: Throttle linkage rod and carburetor angle should be colinear (form a straight line).