Thank you for purchasing the Tekno RC NB48 1/8th 4WD Nitro Competition Buggy. The NB48 represents the state-of-the-art in 1/8th nitro buggy technology. We hope you have as much fun driving your new vehicle as we did developing it. We are always working on new projects, so please check our website (www.teknorc.com) regularly for the latest news, parts, and kits. Thanks again.

Additional equipment and parts needed:
- 2/3 channel surface radio transmitter and receiver
- High torque steering and brake servo
- RX battery, switch harness
- .21 nitro engine, tuned pipe, manifold, and glow plug
- Fuel bottle, fuel, 1/8th buggy starter box, and glow ignitor
- 1/8th scale buggy tires, wheels & CA glue
- Paint for body

Tools needed:
- Hex drivers (1.5mm, 2.0mm, 2.5mm)
- Nut drivers (5.0mm, 5.5mm, 7.0mm)
- Hobby knife
- Needle-nose pliers, screwdrivers
- 4mm turnbuckle wrench
- 4mm arm reamer
- Lexan body scissors & reamer

Disclaimer: Tekno RC is not responsible or liable for any property or personal damage, loss, or injury incurred as a result of using this product. This kit is meant for use by persons 14 years of age or older and in the strict confines of a legally permitted RC track or facility.

Warnings:
Always double-check that your radio gear is working properly before operating vehicle. Never operate the vehicle indoors (unless the RC track is an indoor facility). Use caution while operating vehicle so as not to collide with people who may be turn mashalling or who might otherwise not be aware that a fast moving RC vehicle is in the vicinity.

Warranty:
We warrant that the parts included in this kit are free from defects. If you find a defective part in your kit, please contact us at info@teknorc.com and we will help you to resolve the issue. We do not warranty parts that may be broken during operation of the vehicle or otherwise. Refer to the end of this instruction manual for a listing of spare/replacement and option parts. All spare parts and other info are available on our website (www.teknorc.com) and through our network of domestic and international dealers and distributors.
Bag A

Front Differential (Overview)

Step A-1

- M3x14mm Flat Head Screw x4
- TKR1325
- TKR5144
- Differential O-rings x2
- TKR5145
- Differential Shims (6x17mm) x2
- TKRBB08165
- Ball Bearing (8x16x5mm) x2

Note: Apply a liberal amount of grease to the outdrives, o-rings, and the large diff shims. This will ensure smooth operation.

Step A-2

- TKR5150
- TKR5145
- TKRBB08165

Step A-3

- Fill with 7000 wt oil to 1mm below full

Step A-4

- TKR1325 x4
- TKR5145
- TKR5143

Note: Apply a liberal amount of grease in the areas between the shims and o-rings, as well as around the outdrive and both sides of the seal.
Bag B
Center Differential
(Overview)

Note: Apply a liberal
amount of grease in the
areas between the shims
and o-rings, as well as
around the outdrive and
both sides of the seal.

Note: Apply a liberal
amount of grease to the
outdrives, o-rings, and the
large diff shims. This will ensure
smooth operation.

TKR1325 x4
M3x14mm Flat Head Screw

TKR5144 Differential O-rings

TKR5145 Differential Shims (6x17mm)

TKRBB08165 Ball Bearing (8x16x5mm)

Fill with 7000 wt to
1mm below full

TKR1325 x4

TKR5144

TKR5145

TKR5143

TKR5113

TKR5149

TKR5115

TKR5150

TKR5112X

TKRBB08165

Grease

DIFF OIL

Grease

Grease

Grease

4
Bag C
Rear Differential
(OVERVIEW)

Step C-1

Note: Apply a liberal amount of grease to the outdrives, o-rings, and the large diff shims. This will ensure smooth operation.

Step C-2

Step C-3

Fill with 5000 wt to 1mm below full

Step C-4

Note: Apply a liberal amount of grease in the areas between the shims and o-rings, as well as around the outdrive and both sides of the seal.
Note: TKR1222 - The gear mesh should be as close as possible without any binding. Test the fitment of the diff with both TKR1222 shims on the gear-side of the diff. If the diff turns freely without binding, continue to next step. If the diff binds and does not turn freely (it will make a grinding or crunching sound when spun), remove one TKR1222 shim from the gear side and install it onto the other side of the diff. Reassemble and test the mesh again. If it is still binding, remove the second TKR1222 shim from the gear side and install it onto the other side of the diff. When you are satisfied that you have the best gear mesh possible continue to the next step.
Bag E
Center Differential Assembly

Front engine configuration (overview)

Step E-1
Note: For optional rear engine configuration, please see step E1-RE on page 32

- **TKR1322**
 - M3x8mm Flat Head Screw
 - x2

- **TKR1402**
 - M3x8mm Button Head Screw
 - x4

- **TKR1404**
 - M3x12mm Button Head Screw
 - x1

- **TKR1522**
 - M3x8mm Cap Head Screw
 - x4

- **TKR1601**
 - M3x4mm Set Screw
 - x2

- **TKR5058A**
 - Pivot Ball M3x5.8mm No Flange
 - x1

Step E-2

Step E-3

Step E-4

Step E-5

Note: Orientation of the brake cam TKR5215. The rear cam should be pointing up & the front cam should be pointing down.

Note: For optional rear engine configuration, please see step E5-RE on page 32

Pre-thread all brake post holes with a separate M3 screw

(Option)

Note: For optional rear engine configuration, please see step E1-RE on page 32

(longer link) more rear bias

(shorter link) more front bias

Thread Lock

Rear

Front

Page 7
Note: TKR1222 - The gear mesh should be as close as possible without any binding. Test the fitment of the diff with both TKR1222 shims on the gear-side of the diff. If the diff turns freely without binding, continue to next step. If the diff binds and does not turn freely (it will make a grinding or crunching sound when spun), remove one TKR1222 shim from the gear side and install it onto the other side of the diff. Reassemble and test the mesh again. If it is still binding, remove the second TKR1222 shim from the gear side and install it onto the other side of the diff. When you are satisfied that you have the best gear mesh possible continue to the next step.
Most downforce Neutral Least downforce

TKR1524
TKR1524
TKR1529
TKR1529
TKR1201
TKR1221
TKR1221

Bag G
Wing Mount

Step G-1

TKR1524 TKR5026

TKR1524

Step G-2

TKR1201 M3 Lock Nut Black x2
TKR1221 M3x8mm Washer x2
TKR1524 M3x12mm Cap Head Screw x8
TKR1529 M3x20mm Cap Head Screw x4

Top hole is stock position (least amount of downforce)
Note: The holes in the arms are purposely tight and reaming the hinge pin holes may be necessary for bind-free suspension operation. Ream the hinge pin holes with a 4mm reamer until the pins easily fall through the hole without interference. This will ensure consistent suspension action.
Bag H

Rear Sway Bar

Step H-3

Install the Sway Bar Ball onto the Sway Bar Wire until the end of the wire is flush with the ball as shown in the picture above.

Step H-4

Loosen the M3x4 set screw (TKR1601) if the anti-roll bar does not turn freely.

Note: Do not over-tighten.

TKR5084 - 2.6mm (Option)
- *TKR5080 - 2.2mm
- *TKR5081 - 2.3mm
- *TKR5082 - 2.4mm
- *TKR5083 - 2.5mm
- *TKR5085 - 2.8mm
- *TKR5087 - 3.0mm

TKR1522
- M3x8mm Cap Head Screw x2
- M3x4mm Set Screw x6

TKR1601
- Thread Lock

TKR5086
- TKR1522

TKR1601
- Install the Sway Bar Ball onto the Sway Bar Wire until the end of the wire is flush with the ball as shown in the picture above.
Bag 1

Rear Hub/CVA Assembly

Step 1-1

- TKR5072
- TKR5073
- TKR5070
- TKR5040

Note: Notch on pin needs to line up with set screw.

Step 1-2

- TKR5071
- TKR5071C
- TKR5071X (Optional)
- TKR507018
- TKR1603

Note: Do not overtighten rear outer hinge pin (TKR5034). Hinge pin should rotate freely.

TKR1201

M3 Locknut Black

- x4

TKR1603

M5x4mm Setscrew

- x2

TKR5071X

M3x16.8mm Pin

- x2

TKR5073

CV Joint Pin

- x2

TKR8808165

Ball Bearing (8x16x5)

- x2

TKR8813194

Ball Bearing (13x19x4)

Grease

Hole B is the stock position

*Only use hole A in the arm with hole A in the hub

*Only use hole B in the arm with hole B in the hub

The outside hole offers greater stability and is recommended for bumpy open tracks. Inside hole offers greater amount of steering and is recommended for flat technical tracks.
Bag I

Rear Camber Links

- **Left**
 - This side mounts on hub
 - Note: no flange
 - TKR5051

- **Right**
 - This side mounts on shock tower
 - Note: flange
 - TKR5051

Step 1-3

- TKR5050
- TKR5052A

Step 1-4

- Note: Notch always goes on left side of vehicle
- 28.00

Stock Position

- TKR1201
- TKR1529

Parts List

- **TKR1201**
 - M3 Locknut Black
 - x4

- **TKR1529**
 - M3x20mm Cap Head Screw
 - x4

- **TKR5052A**
 - Pivot Ball M3x6.8mm
 - x2

- **TKR5053A**
 - Pivot Ball M3x6.8mm No Flange
 - x2

Stock Position

- 5/ C
Note: The holes in the arms are purposely tight and reaming the hinge pin holes may be necessary for bind-free suspension operation. Ream the hinge pin holes with a 4mm reamer until the pins easily fall through the hole without interference. This will ensure consistent suspension action.
Step J-3

Install the Sway Bar Ball onto the Sway Bar Wire until the end of the wire is flush with the ball as picture above.

Loosen the M3x4 set screw (TKR1601) if the anti-roll bar does not turn freely.

*TKR5080 - 2.2mm
*TKR5081 - 2.3mm
*TKR5082 - 2.4mm
*TKR5084 - 2.6mm
*TKR5085 - 2.8mm
*TKR5087 - 3.0mm

Step J-4

Install the Sway Bar Ball onto the Sway Bar Wire until the end of the wire is flush with the ball as picture above.

Loosen the M3x4 set screw (TKR1601) if the anti-roll bar does not turn freely.

Note: Do not over-tighten

TKR1522 x2
M3x8mm Cap Head Screw

TKR1601 x6
M3x4mm Set Screw
Bag K

Front Steering

Step K-1

- TKR1221 M3x8mm Washer x8
- TKR1401 M3x6mm Button Head Screw x2
- TKR1445 M4x14mm Button Head Screw x4
- TKR1447 M4x16mm Button Head Screw x2
- TKR1448 M4x18mm Button Head Screw x2
- TKR1603 M5x4mm Set Screw x4
- TKR5054A Spindle Pin Sleeve x4
- TKR5055A Suspension Pin Sleeve Front x2
- TKR5071 M3x16.8mm Pin x2
- TKR5073 CV Joint Pin x2
- TKR8808144 x2
- TKR8813194 x2

Note: Notch on pin needs to line up with set screw.

Step K-2

- TKR1221 M3x8mm Washer x8
- TKR1401 M3x6mm Button Head Screw x2
- TKR1445 M4x14mm Button Head Screw x4
- TKR1447 M4x16mm Button Head Screw x2
- TKR1448 M4x18mm Button Head Screw x2
- TKR1603 M5x4mm Set Screw x4
- TKR5054A Spindle Pin Sleeve x4
- TKR5055A Suspension Pin Sleeve Front x2
- TKR5071 M3x16.8mm Pin x2
- TKR5073 CV Joint Pin x2
- TKR8808144 x2
- TKR8813194 x2

Note: Fully tighten screws (TKR1445), then loosen until spindles (TKR5041) move freely. This will ensure smooth operation and minimize play.

Step K-3

- TKR1447 M4x14mm Button Head Screw x2
- TKR5055A Suspension Pin Sleeve Front x2

Note: Fully tighten screws (TKR1447, TKR1448), then loosen until spindles carriers (TKR5042B) move freely. This will ensure smooth operation and minimize play.

Note: The steering stops provide adjustable travel limiters that you can adjust to your driving style. For very tight tracks you may want to experiment with less limiting washers (more steering travel). However, with too much steering travel the rear end can lose traction more easily coming out of corners. After months of testing on different track surfaces, 4 washers is the most consistent setting.
BAG K

Front Camber Links

Left
- TKR5051
- TKR5052A
- TKR5050

Right
- TKR5053A
- TKR5050
- TKR5051

Note:
- This side mounts on shock tower
- Note: flange
- This side mounts on hub
- Note: no flange

Step K-4
- TKR5053A

Step K-5
- TKR1529
- TKR1201

Note:
- Notch always goes on left side of vehicle
- Stock position is 2A

Materials
- X4 TKR1201 M3 Lock Nut Black
- X4 TKR1529 M3x20mm Cap Head Screw
- X2 TKR5052A Pivot Ball M3x6.8mm
- X2 TKR5053A Pivot Ball M3x6.8mm No Flange

Dimensions:
- 18.00
Bag L

Steering Assembly (Overview)

- **Step L-1**
 - Note: Tighten nut all the way down, then back it off 4 full turns.

- **Step L-2**
 - Note: Apply a small drop of oil for easy o-ring installation.

- **Step L-3**
 - Note: Notch always goes on the left side of the vehicle.

- **Step L-4**
 - Note: Stock bumpsteer setting is 4 washers between Ackermann plate and pivot ball.

Parts List

- x2 TKR1201 M3 Lock Nut Black
- x8 TKR1221 M3x8mm Washer
- x2 TKR1323 M3x10mm Flat Head Screw
- x2 TKR1529 M3x20mm Cap Head Screw
- x4 TKR5052A Pivot Ball M3x6.8mm
- x1 TKR5231 O-ring 16x12x2
- x4 TKR88050825 Ball Bearing (5x8x2.5)
- x4 TKR8806103 Ball Bearing (6x10x3)

Notes

- TKR1323 Thread Lock

- TKR5052A Thread Lock
Step M-1

- TKR1201 M3 Lock Nut Black (x2)
- TKR1221 M3x8mm Washer (x8)
- TKR1323 M3x10mm Flat Head Screw (x1)

Step M-2

- TKR1343 M4x10mm Flat Head Screw (x2)
- TKR1344 M4x12mm Flat Head Screw (x4)
- TKR1401 M3x6mm Button Head Screw (x4)
- TKR1443 M4x10mm Button Head Screw (x5)
- TKR1522 M3x8mm Cap Head Screw (x1)
- TKR1529 M3x20mm Cap Head Screw (x2)

Step M-3

- Note: Initial bumpsteer setting is 2 washers above and 2 washers below the pivot ball.

Step M-4

- Note: For optional rear engine configuration, please see step M4-RE on page 32

Note:
- Do not tighten the screws all the way down until the assembly steps are complete.
- Position the entire front assembly on the chassis and tighten each screw evenly.
- For optional rear engine motor configuration, please see page 32.
Step N-1

Note: Two rear chassis braces are included in the kit. The longer brace is the stock brace. The short brace is optional. The longer brace will provide less flex. Adding the short brace will further stiffen the chassis. Running only the short brace will provide the most flex.

Bag N

Center/Rear Assembly

- TKR5377
- TKR1443
- TKR1343
- TKR5362
- TKR1344
- TKR5362
- TKR1344
- TKR5376

Step N-2

- TKR1343
 - M4x10mm Flat Head Screw x4
- TKR1344
 - M4x12mm Flat Head Screw x8
- TKR1443
 - M4x10mm Button Head Screw x2
Shock Filling Instructions
For both front and rear shocks

The following steps and information will provide you with the proper way to fill and bleed your Tekno RC NB48 shocks.

After thorough testing, we’ve found it’s easiest to complete steps 1 through 3 on each shock before moving onto step 4. By the time you’ve finished step 3 on the last shock the first one should be ready for step 4.

Step 1. Extend the shock shaft all the way down. Fill the shock with oil until the body is approximately 90% full.

Step 2. Slowly pump the shock shaft up and down about 3-5 times to release air bubbles from underneath the piston.

Step 3. Let the shock rest vertically with the shock shaft fully extended for five minutes or until all of the air bubbles have released.

Step 4. Push the shaft in so that ~20mm of shaft is between the bottom of the cartridge and the top of the rod end. Make sure that you match the rebound amount between the left and right shocks. The vented cap design doesn’t provide much rebound. We’ve found that running the least amount of (0%) rebound in both the front and rear shocks gives the most consistent overall performance.

Step 5. Next you will top off the shock with oil. Fill to just a hair below full, level with the top of the shock body, but not doming over the top. If you do overfill the shock, it won’t hurt performance, it will just spill out.

Step 6. In this step you will be placing the bladder inside the shock cap. Slowly screw the shock cap onto the shock body while holding the shock vertically. Continue screwing slowly until oil begins to bleed out of the bleeder hole. At this point, rotate the shock over about 50-60 degrees with the bleeder hole pointing up. Continue to screw the cap on and bleed the shock until the cap is tight. Wipe off excess oil. A good hand tightening is all that is needed, but feel free to use tools to make them tighter if you wish.

Note: It’s very important to consider ambient temperature when selecting shock oil viscosity. We recommend #500 cst for the front suspension and #400 cst for the rear suspension for 70-80°F (21-26°C) outside temperature. You may need to go up or down 50-100cst in shock oil for each 10°F (5°C) of temperature change (lower temperature -> lower viscosity). The oils in the kits are a great starting point. We suggest starting with the kit oils and moving up or down depending on the track conditions and ambient temperature. You can build the shocks in any manner you prefer, but we’ve found this way provides the best handling and more consistent shocks. They will also last longer between rebuilds.

Use part #’s TKR6008 (shock bushings and cartridge guides) and TKR6009 (o-ring pack) to rebuild your shocks regularly.

We also offer a line of optional CNC shock pistons (TKR6050 -> TKR6054). The included pistons are TKR6051 (8x1.3mm holes).
Bag O

Front Shock Assembly

Step 0-1

- Fill oil level just below the top of the shock body.
- Use #500 Oil Front

Step 0-2

- Note: make sure to tighten both cartridge cap (TKR6015) and shock cap (TKR6003) to ensure a proper seal. Tools may be required.

Step 0-3

- Stock shock position is the middle hole on the arm and the inside hole on the tower.
- Stock front ride height is 25mm. Shock length (droop) is 106mm.

- Note: slot in spring perch should face outside of vehicle.

Notes

- Note: front shocks use shorter shock bodies - TKR6002, shorter shock shafts - TKR6004, shorter springs - TKR6035 and shorter shock boots - TKR6023

- Note: Use green slime or oil on shock shaft threads AND O-rings to prevent tearing and leaking.

- Note: Apply a small drop of oil for easy installation.

- Note: Use green slime or oil on shock shaft threads AND O-rings to prevent tearing and leaking.

Parts List

- TKR6015
- TKR6008
- TKR6009
- TKR6013
- TKR6007
- TKR6005
- TKR6002
- TKR6051
- TKR6052
- TKR6053
- TKR6054 (Option)
- TKR6003 (Option)
- TKR6050
- TKR6051
- TKR6052
- TKR6053
- TKR6054 (Option)
- TKR6009
- TKR6004 (Option)
- TKR6004T (Option)
- TKR6018
- TKR6036
- TKR6037
- TKR6038
- TKR6039 (Option)
- TKR1200
- TKR5049A
- TKR1202
- TKR5027
- TKR1211
- TKR1529
- TKR1200
- TKR1202
- TKR1211
- TKR1529
Bag P

Rear Shock Assembly

Step P-1

Note: rear shocks use longer shock bodies - TKR6016, longer shock shafts - TKR6017, longer springs - TKR6034 and longer shock boots - TKR6023.

Step P-2

Fill oil level just below the top of the shock body. Use #400 oil.

Note: make sure to tighten both cartridge cap (TKR6013) and shock cap (TKR6003) to ensure a proper seal. Tools may be required.

Step P-3

Stock shock position is the middle hole on the arm and the inside hole on the tower. Stock rear ride height is 25mm. Shock length (droop) is 121mm.

Make note: slot in spring perch should face outside of vehicle.
Note: We recommend using a piece of thin foam or other type of padding under the battery to reduce shock. Likewise, we suggest either using a couple layers of 2-sided tape under the receiver or simply use another piece of foam and let the receiver 'float' in the box. The servo wires will help keep the receiver in place and provide shock protection.

RED = Switch / YELLOW = Brake Servo / BLUE = Steering Servo
Bag Q

Mud Guard Installation

Step Q-4

Note: Do not overtighten radio tray screws.

![Diagram of Step Q-4](image)

Step Q-5

Note: Do not overtighten radio tray screws.

![Diagram of Step Q-5](image)

- **TKR1343**
 - M4x10mm Flat Head Screw
 - X6

- **TKR1323**
 - M3x10mm Flat Head Screw
 - X3

x3
TKR1323
M3x10mm Flat Head Screw

x6
TKR1343
M4x10mm Flat Head Screw
Bag R

Air Filter / Clutch

Step R-1

Note: Your kit contains 3 sets of clutch springs. 0.9mm (green), 1.0mm (gold), and 1.1mm (red) springs are included. The stock setting is to use (2x) 0.9mm springs on opposing shoes and then use (2x) 1.0mm springs on the other shoes. If the track is very high bite you can use (2x) 1.0mm springs and (2x) 1.1mm springs for more 'pop'. However, we strongly recommend trying the stock setting first and adjusting from there.

Step R-2

Step R-3

Note: Secure air filter hose with 2 zip ties (included).

Step R-4

Note: Properly shimming the clutch bell is critical. The clutch bell must not rub on the flywheel. Depending on your particular engine, you may need to use a few of the 5x7x2mm shims (TKR1226) to properly space the clutch bell. The clutch bell must also move freely when the end washer and screw are fastened. There is no 'one size fits all' for the number and order of clutch bell shims that need to be used. In rare cases, the clutch bell may be too long. Simply put the clutch bell flat on a sheet of 200 grit sand paper (teeth side up) and sand about .2mm off the bottom. This should only take a minute and it will ensure that your clutch is working properly.

*Engine and Pipe Sold Separately

*Manifold and pipe springs not shown or included

TKR1226
5x7x0.2mm Shim

TKR1323
M3x10mm Flat Head Screw

TKR5351
Clutch Pin

TKR8805115
Ball Bearing (5x11x5)

TKR8805134
Ball Bearing (5x13x4)
Bag S

Engine / Pipe Installation

Step S-1

Note: For optional rear engine configuration, please see step S1-RE on page 32

VERY IMPORTANT - With the set screws that secure the pipe hanger wire set loose, install pipe onto pipe hanger wire. Adjust the wire such that the pipe and the manifold connections from the engine are not bent or angled. The pipe must fit naturally. You may need to bend the pipe hanger wire to accomplish this. Then tighten the set screw that secures the wire to the wire hanger block. The wire must then be cut flush to the wire hanger block so it will not interfere with the fuel tank. If the wire is not flush with the block, you may risk puncturing your fuel tank.

*You may need to bend the pipe wire hanger forward or backward depending on your particular pipe.

Step S-2

Step S-3

TKR1343

M4x10mm Flat Head Screw

TKR1524

M3x12mm Cap Head Screw

TKR1525

M3x14mm Cap Head Screw

TKR1603

M5x4mm Set Screw

Set Screw (not included)
Step T-1

Step T-2

Step T-3

Note: Offset servo arm so it is parallel with the connecting arm at neutral or zero servo position.
Note: You may need to rotate the carburetor and ball end to achieve proper throttle linkage alignment. The ball end should be leaning back when the forward engine position is used. The ball end should be leaning forward when the rear engine position is used. This will eliminate any binding due to improper alignment.

Note: After your throttle linkage is adjusted correctly, you may need to cut the excess wire from the throttle linkage rod. Leave approx. 5mm of wire behind the linkage stopper. If too much wire is left it will interfere with the body.

Note: Your throttle linkage should look something like this.

Note: Throttle linkage rod and carburetor angle should be colinear (form a straight line).

Note: The throttle arm of the throttle/brake servo horn should be parallel with the direction of the vehicle (point straight ahead as shown). The spring and linkage stopper on the throttle linkage should be adjusted such that the carburetor is fully closed at this position. The linkage stopper should be very tight. Full throttle end point should not flex the radio tray or put undue stress on the carburetor. Go fully open, then back off a couple ticks. Brake adjustment should be done in a similar matter. On the track, make a final adjustments to the brakes to suit your particular driving style.

Bag T

Brake Linkage

Step T-4

Step T-5

Step T-6

Note: After your throttle linkage is adjusted correctly, you may need to cut the excess wire from the throttle linkage rod. Leave approx. 5mm of wire behind the linkage stopper. If too much wire is left it will interfere with the body.

Note: Your throttle linkage should look something like this.

Note: Throttle linkage rod and carburetor angle should be colinear (form a straight line).

Note: The throttle arm of the throttle/brake servo horn should be parallel with the direction of the vehicle (point straight ahead as shown). The spring and linkage stopper on the throttle linkage should be adjusted such that the carburetor is fully closed at this position. The linkage stopper should be very tight. Full throttle end point should not flex the radio tray or put undue stress on the carburetor. Go fully open, then back off a couple ticks. Brake adjustment should be done in a similar matter. On the track, make a final adjustments to the brakes to suit your particular driving style.
BAG U

FUEL TANK

STEP U-1

TKR5340

TKR5340

TKR5340

STEP U-3

TKR1323

STEP U-4

Note: Install (2x) o-rings (TKR5125) under each end of the fuel tank. This will allow you to tighten the screw (TKR1524) and still allow the tank to move slightly and absorb shock better.

Align the fuel tank posts to the cutouts in the chassis

Note: Fuel tubing wraps around the tank 1 1/2 times from the pick up nipple (yellow line). Pressure line is shown in blue.

TKR1221

TKR1323

TKR1402

TKR1524

O-ring 3x7mm

x4

TKR5125

M3x12mm Cap Head Screw

x2

TKR5341

M3x8mm Washer

x4

TKR1524

M3x12mm Cap Head Screw

x2

TKR1402

M3x8mm Button Head Screw

x2
Bag V

Wing and Body

Step V-1

- TKR5037
- TKR5037B
- TKR5037Y (Option)

Step V-2

- TKR1220
- TKR5026
- TKR1220
- TKR5026

Step V-3

- TKR1201
- TKR1235
- TKR5026
- TKR5037
- TKR5037B
- TKR5116
- TKR5037Y (Option)

- TKR1235
- M3x14mm Flat Head Screw x2
- TKR1325
- M3 Lock Nut Black x2
- TKR1201
- TKR5116
- Wheel Nut x2
- StepV-1
- StepV-2
- StepV-3
- TKR1235
- Body Clip x2
- TKR5116
- Wheel Nut x4
- TKR5116
- Wheel Nut x4
- TKR1201
- TKR5026
- TKR1220
- TKR5026
- TKR1220
- TKR5037
- TKR5037B
- TKR5116
- TKR5037Y (Option)

31
Note: The orientation of the engine mounts (TKR5323) and the exhaust pipe hanger (TKR5321) have changed to accommodate the rear engine configuration.

Note: Throttle linkage rod and carburetor angle should be colinear (form a straight line).
Setup Sheet

Name: Kit Set-up
Date:
Event/Track:

Track Conditions:
- Outdoor
- Indoor
- Wet
- Dry
- High Bite
- Low Bite
- Rough
- Smooth
- Hard Packed
- Loose/Loamy
- Blue Groove

Bumpsteer/Ackerman/Servo Saver/Steering Stop:

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td># washers over</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td># washers under</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Suspension:

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDE HEIGHT:</td>
<td>25mm</td>
<td>25mm</td>
</tr>
<tr>
<td>TOE (in/out):</td>
<td>1 deg out</td>
<td>3 deg in</td>
</tr>
<tr>
<td>CAMBER:</td>
<td>1.5 deg</td>
<td>1.5 deg</td>
</tr>
<tr>
<td>CASTER:</td>
<td>15 Deg*</td>
<td></td>
</tr>
<tr>
<td>SHOCK LENGTH (DROP):</td>
<td>106</td>
<td>127</td>
</tr>
<tr>
<td>SWAY BAR:</td>
<td>2.5mm</td>
<td>2.6mm</td>
</tr>
</tbody>
</table>

Tires/Wheels:

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAND:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREAD:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSERT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHEEL:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differential Oil:

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>CENTER</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODY/WING:**</td>
<td>stock</td>
<td>stock</td>
<td></td>
</tr>
</tbody>
</table>

Body/Wing:

WHEELBASE:

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheelbase:</td>
<td>2 mm/Front</td>
<td>3 mm/REAR</td>
</tr>
</tbody>
</table>

Equipment:

Drivetrain:

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>CENTER</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUTCH/SPUR:</td>
<td>15</td>
<td>44 (teeth)</td>
<td></td>
</tr>
<tr>
<td>CLUTCH SHOES:</td>
<td>stock</td>
<td>7075 alum</td>
<td></td>
</tr>
<tr>
<td>CLUTCH SPRINGS:</td>
<td>2x 0.9mm, 2x 1.0mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chassis Braces:

<table>
<thead>
<tr>
<th></th>
<th>Center</th>
<th>Rear Left</th>
<th>Rear Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shocks:</td>
<td>FRON</td>
<td>REAR</td>
<td></td>
</tr>
<tr>
<td>STD/EMUL/VENT:</td>
<td>Vented</td>
<td>Vented</td>
<td></td>
</tr>
<tr>
<td>PISTON:</td>
<td>8x1.3</td>
<td>8x1.3</td>
<td></td>
</tr>
<tr>
<td>OIL:</td>
<td>500</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>BLADDER:</td>
<td>stock</td>
<td>stock</td>
<td></td>
</tr>
<tr>
<td>REBOUND:</td>
<td>10 %</td>
<td>10 %</td>
<td></td>
</tr>
<tr>
<td>SPRING:</td>
<td>Pink</td>
<td>Red</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

Notes:
Setup Sheet

Front End:

- **Ride Height:**
 - FRONT
 - REAR

- **Toe (in/out):**
 - FRONT
 - REAR

- **Camber:** Deg

- **Caster:** Deg

- **Shock Length (Drop):**

- **Sway Bar:**

Suspension:

Tires / Wheels:

- **Front:**
 - BRAND:
 - TREAD:
 - COMPOUND:
 - INSERT:
 - WHEEL:

- **Rear:**

Differential Oil:

Body/Wing:

- **Body:**

- **Wing:**

Wheelbase:

- **Front:**
 - Wheelbase:
 - Notes:

- **Rear:**

Equipment:

- **Engine:**
- **Pipe:**
- **Plug:**
- **Fuel:**
- **RX Batt:**

Drivetrain:

- **Clutch/Spur:** (teeth)
- **Clutch Shoes:**
- **Clutch Springs:**
- **Engine Position:**
 - Front
 - Rear
- **Brake Bias:**
 - Front
 - Rear

Chassis Braces:

- **Center**
- **Rear Left**
- **Rear Right**